

THE TRUTH ABOUT STRUCTURE & BONDING 2

In each question give the letter of the correct answer, and the number for the correct explanation of that answer.

- 1) Potassium fluoride, KF, exists as a molecule.
 - A True
 - B False
 - 1 The potassium atom shares a pair of electrons with the fluorine atom to form a simple molecule.
 - 2 After donating its outer electron to the fluorine atom, the potassium ion forms a molecule with the fluoride ion.
 - 3 Potassium fluoride exists as a lattice consisting of potassium and fluoride ions.
 - 4 Potassium fluoride exists as a lattice of covalently bonded potassium and fluorine atoms.
- 2) Water (H₂O) and hydrogen sulphide (H₂S) have similar chemical formulae and structures. At room temperature, water is a liquid and hydrogen sulphide is a gas. The difference in state is due to:
 - C forces between molecules
 - D forces within molecules
 - The difference in the forces attracting water molecules and those attracting hydrogen sulphide molecules is due to the different strength of the O-H and S-H covalent bonds.
 - The covalent bonds in hydrogen sulphide molecules are easily broken whereas those in water molecules are not.
 - 7 The hydrogen sulphide molecules are closer to each other, leading to greater attraction between molecules.
 - The forces between water molecules are stronger than those between hydrogen sulphide molecules.
- 3) Silicon carbide has a high melting point and a high boiling point. This information suggests that the bonds in silicon carbide are:
 - E Weak
 - F Strong

- 9 Silicon carbide is a simple molecular solid.
- Silicon carbide has a giant molecular structure, composed of covalently bonded molecules.
- 11 Silicon carbide has a giant covalent structure, composed of covalently bonded atoms.
- 12 A large amount of energy is needed to break the intermolecular forces in silicon carbide.
- 4) Element C (electron arrangement: 2.8.8.2) and element E (electron arrangement 2.7) react to form an ionic compound CE₂:
 - **G** True
 - H False
 - An atom of C will share one pair of electrons with each atom of E to form a covalent molecule, CE₂.
 - 14 A giant molecular structure consists of covalently bonded atoms of C and E.
 - Atoms of C will each lose two electrons and twice as many atoms of E will each gain one electron to form an ionic compound CE₂.
 - An atom of C will lose one electron to an atom of E to form an ionic compound CE.
- 5) Sulphur atoms form rings consisting of eight atoms (S_8) covalently bonded together. From this, it can be concluded that sulphur's structure is:
 - Simple molecular
 - Giant molecular
 - 17 Simple molecular substances consist only of small molecules made up of two to four atoms.
 - Simple molecular compounds consist of molecules with weak forces between the molecules.
 - 19 Giant molecular substances contain molecules which are covalently bonded together.
 - When the atoms of a molecule are covalently bonded, they will form a giant molecular structure.
- 6) a) What do each of the following formulas tell you about the structure and bonding in that substance.
 - i) CH₄
- ii) Mg
- iii) SiO₂
- iv) CaBr₂
- v) Ar
- b) What is the difference between a substance with a giant covalent structure and a simple covalent structure